Teaching

Courses in WS 2017/2018

Courses in SS 2017

Courses in WS 2016/2017

Teaching materials for the individual courses are posted on the StudOn platform.


Selbstorganisationsprozesse

Vorlesung mit Übung, 2+1 SWS
Studiengänge:

  • Chemie- und Bioingenieurwesen (Master)
  • Chemical Engineering – Nachhaltige Chemische Technologien (Master)
  • Life Science Engineering (Master)

Inhalt:
Structure formation with elementary building blocks in molecular, particulate, soft, and biological systems. Theoretical aspects, experimental realizations, and applications are discussed.

  • Theory 1 (introduction): the idea of building blocks, thermodynamic principles
  • Theory 2 (continuum): spinodal decomposition, reaction diffusion, phase field model, feedback
  • Theory 3 (particles): entropy maximization, interface minimization
  • Molecules 1 (basics): molecular interactions, role of shape
  • Molecules 2 (liquid crystals): topological order, defects
  • Molecules 3 (interfaces): surfactants, micelles, emulsions, foams, vesicles
  • Molecules 4 (beyond): block copolymers, membranes, proteins, metal organic frameworks
  • Colloids 1 (isotropic particles): interaction forces, depletion, hydrophobic(-philic)
  • Colloids 2 (directed assembly): diffusion-limited aggregation, printing, coffee stain effect
  • Colloids 3 (anisotropic particles): nanoparticles, patchy particles, ligands, directionality
  • Colloids 4 (properties): surface functionalization, plasmonics, filtration, catalysis, mechanical
  • Bioinspired 1 (dynamic self-assembly): active matter, bacteria, swarms, robots
  • Bioinspired 2 (design): programmable assembly, DNA nanotechnology, inverse problems

Lernziele und Kompetenzen:
The students

  • describe complex self-organization processes with the help of simple model systems
  • apply this knowledge to physical, chemical, and bioinspired systems
  • develop an advanced understanding of the self-organization of (macro)molecules and colloids
  • understand processes to direct and influence self-organization processes
  • judge the relevance of self-organization for the processing and synthesis of materials
  • gain insight into current research in the field of the lecture

Simulation granularer und molekularer Systeme

Vorlesung mit Übung und Praktikum, 4+1+3 SWS
Studiengänge:

  • Chemie- und Bioingenieurwesen (Master)
  • Chemical Engineering – Nachhaltige Chemische Technologien (Master)
  • Life Science Engineering (Master)

Inhalt:
Die Lehrveranstaltung befasst sich mit der Simulation von Systemen vieler Teilchen mit Hilfe verschiedener numerischen Methoden:

  • Molekulardynamik (zeit- und ereignisgesteuert)
  • Diskrete-Element Methode (DEM) zur Simulation von granularen Systemen
  • Starrkörpersimulation als Alternative zu DEM
  • Partikelbasierte Fluiddynamik am Beispiel von Direct Simulation Monte-Carlo und Smoothed-Particle Hydrodynamics (SPH)

Lernziele und Kompetenzen:
Die Studierenden

  • sind mit den grundsätzlichen Methoden der numerischen Modellierung molekularer und granularer Systeme vertraut,
  • besitzen vertiefte Kenntnisse bezüglich der verwendeten numerischen Methoden und der wichtigsten Algorithmen und Datenstrukturen,
  • implementieren einzelne Aspekte dieser Methoden,
  • modellieren einfache Systeme,
  • können selbständig numerische Simulationen dieser Systeme durchführen und auswerten.

Basics in Computational Materials Science and Process Simulation 1

Vorlesung, 2 SWS
Studiengänge:

  • Advanced Materials and Processes (Master)
  • Computational Engineering (Master)

Inhalt:
Introduction to modeling and simulation in materials science and process technology
Overview of different simulation methods on the micro- and mesoscale

  • Electronic structure calculations
  • Atomistic simulations
  • Particle-based simulations

Lernziele und Kompetenzen:
The preparation course enables the students to work in a typical scientific computing environment. In the lecture, the students get an overview of simulation methods on the scale of atoms and molecules as well as an introduction to the underlying physics of interatomic and intermolecular interaction.