The German Research Foundation just announced that CRC 1411 will receive funding until 2028.

The long-term vision of CRC1411 is to develop particle systems with controlled size, shape and composition. The innovative approach in CRC1411 is is that these materials are first developed and optimized for specific product properties in computer models. In the second step, the computer then predicts optimal synthesis conditions that lead to particles with these desired properties. This approach reverses typical manufacturing processes and promises fast and resource-efficient access to functional particle-based materials with optimal characteristics.

Carlos Lange Bassani received an EAM Starting Grant. This grant is an encouragement for young researchers to venture into inovative and risky projects, and is a stepping stone towards ERC grant applications. Congratulations!

Simulation vs. microscopy images of nanocrystal habits. Simulations use rejection-free kinetic Monte Carlo to grow realistic-sized nanocrystals atom-by-atom. References of microscope images: [1] Xia et al., J. Am. Chem. Soc. 2012, 134, 1793; [2] Ahn et al., J. Mat. Chem. C 2013, 1, 6861; [3] Chen et al., Nature Comm. 2020, 11, 3041; [4] Sun et al., ACS Nano 2021, 15, 15953, [5] Xia and Xia, Nano Lett. 2012, 12, 6038; [6] Langille et al., Science 2012, 337, 954.

Nanocrystal (NC) superlattices are a novel way to design functional materials. Nanomaterial chemists thrived in forming NCs with controlled size and shape and assembling them into superstructures. Functionality of these materials relies on precise control of NC habits and superstructure formation, as well as on the electronic coupling between NCs –that is, it is an inherently multiscale process–, but multiscale models did not keep pace with recent advances in the field.

The proposed project upscales from atomic to realistic-sized NCs with 10s-of-millions of atoms via rejection-free kinetic Monte Carlo based on the semi-Gibbs ensemble. Of interest is the role of strain accumulation affected by defects, lattice mismatch, and geometric frustration, thus kinetically entrapping NCs into lower symmetry habits –that is, NC shapes that do not comply with the symmetry of the underlying crystalline structure. Coupling with reactor scales (the environment) to understand mass transfer-limited crystallization is also pivotal to predicting the yield of denser NC populations. A multiscale understanding from atom-to-NC-to-environment will optimize NC synthesis conditions and design strategies for new NC habits.

The tetrahedral geometry is ubiquitous in natural and synthetic systems. Regular tetrahedra do not tile space, which makes understanding their self-assembly behavior a formidable challenge. In 2009, simulations of hard tetrahedra —that is particles with the shape of a regular tetrahedron, interacting only by excluded volume interactions— discovered a dodecagonal quasicrystal stabilized by entropy alone. But while this quasicrystal forms robustly and reproducibly in simulation, it competes with periodic approximants and cannot be the thermodynamic ground state in the limit of infinite pressure. In this limit, the densest packing will eventually prevail, which is a simple (in comparison) dimer crystal.

Finally, after 14 years, our simulation predictions are confirmed. Yi Wang from the group of Xingchen Ye at Indiana University (USA) experimentally realized multiple phases of tetrahedron colloids where vertex sharpness, surface ligands, and the self-assembly environment play key roles in the formation of the quasicrystal and the dimer crystal. Our colleagues at the Institute of Micro- and Nanostructure Research at FAU resolved the complex three-dimensional structure of the quasicrystal by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. The joint findings demonstrate the predictive power of computer simulations as well as the importance of accurate control over nanocrystal attributes and the assembly method to realize increasingly complex nanopolyhedron supracrystals.

Read about the research here:

Yi Wang, Jun Chen, Ruipeng Li, Alexander Götz, Dominik Drobek, Thomas Przybilla, Sabine Hübner, Philipp Pelz, Lin Yang, Benjamin Apeleo Zubiri, Erdmann Spiecker, Michael Engel, Xingchen Ye
Controlled Self-Assembly of Gold Nanotetrahedra into Quasicrystals and Complex Periodic Supracrystals
Journal of the American Chemical Society 145, 17902 (2023)

We would like to announce the Kavli Institute of Theoretical Physics (KITP) conference entitled:

Structure Design and Emerging Phenomena in Nanoparticle Assemblies: What’s next?

Time: May 15-18, 2023
Location: University of California, Santa Barbara
Registration deadline: April 16, 2023

The conference aims to provide a coherent view of the current state of the field, bringing together researchers with different expertise and backgrounds. It should catalyze the development of new methods, both theoretical, computational and experimental, and define the basic science in this field.

More information can be found at: https://www.kitp.ucsb.edu/activities/nanoassembly-c23

The workshop organizers

Michael Engel, Friedrich-Alexander-Universität Erlangen-Nürnberg
Laura Na Liu, Universität Stuttgart
Monica Olvera, Northwestern University
Eran Rabani, University of California, Berkeley
Alex Travesset, Iowa State University

We* are coordinating a program at the Kavli Institute of Theoretical Physics at UC Santa Barbara in the period Mar 27, 2023 — May 19, 2023 on the topic nanoparticle assemblies. Applications can still be entered here:

Nanoparticle Assemblies: A New Form of Matter with Classical Structure and Quantum Function

*Coordinators: Michael Engel, Laura Na Liu, Monica Olvera de la Cruz, Eran Rabani, and Alex Travesset

Materials whose elementary building blocks are nanoparticles with dimensions between a few and hundred nanometers, such as nanocrystals and colloids, instead of atoms or molecules, provide a new form of matter, with many properties, both in structure and function, that are not achievable with traditional materials. This raises a number of new fundamental questions such as:

  • What is the minimal physical description at the nanoscale?
  • How to discover new assemblies?
  • What are the effects or properties for these new materials and the characterization of equilibrium and metastability?

The program will bring together scientists from diverse communities: physicists, chemists and material scientists in an effort to address the emerging fundamental questions and long-term prospects of this young field. It will develop collaborative efforts in the areas of programmable assembly, structure prediction, inverse methods, electronic properties and new functional materials, with the goal of becoming a reference for the exciting future ahead.

This look at the geometry of crystals beyond the constraints of chemistry accomplished by computer simulation has been 8+ years in the making:

“Which crystal structures are possible if the restrictions of the quantum realm are lifted? Our knowledge of ordered particle geometries was previously restricted to the kinds of structures observable in hard condensed matter—on the atomic scale. Here, we use freely tunable computational models to represent particles with variable properties, and we determine the crystal structures into which they self-assemble. The resulting arrangements often correspond to structures known from atomic-scale materials; however, we discover a comparable number of previously unknown crystal structures with different local coordination motifs, incompatible with the limitations of the chemical bond. Our results can be used to engineer soft condensed matter with unprecedented, ordered geometries, paving the way toward materials with potentially novel properties.”

Read this work here:

Julia Dshemuchadse, Pablo F. Damasceno, Carolyn L. Phillips, Michael Engel, Sharon C. Glotzer
Moving Beyond the Constraints of Chemistry via Crystal Structure Discovery with Isotropic Multiwell Pair Potentials
Proceedings of the National Academy of Sciences 118, e2024034118 (2021)

A new virtual seminar series called GEOMPACK (geompack.com) aims to bring together researchers from a range of disciplines (physics, materials, biology, mathematics, computer science). The series focuses on problems in geometry and packing in materials and biology, and provides an avenue to share new research and promote discussion.

Seminars will take place in spring every two weeks and are scheduled for Wednesdays at 4:30 pm (London time). The first seminar will be Wednesday, March 24, from Sabetta Matsumoto (GA Tech), “Twisted topological tangles or: the knot theory of knitting”.

Other speakers this semester are Marjolein Dijkstra (Universiteit Utrecht), Sasche Hilgenfeldt (University of Illinois), Lisa Manning (Syracuse University), Vinothan Manoharan (Harvard University), and Giuliana Indelicato (University of York).

To see the line up of speakers and to subscribe to the seminar announcements, visit geompack.com.

FAU will receive funds to establish a National Center for High Performance Computing (NHR@FAU). It will be part of a nationwide network with (initially) seven other centers. The federal and state governments will provide a total of up to 625 million € in funding for the entire project over the next 10 years. Scientific support for broad application groups, promoting the further development of HPC techniques and tools, and training and education activities will also be funded in addition to HPC systems and operating costs.

This is very exciting news for all computationally working research groups in Erlangen. Congratulations to everybody involved!

Read more about this development here.