There is an observation that has been puzzling the colloid community for years: Experiments with binary mixtures of quasi-hard colloids and free energy calculations predicted binary crystals. But simulations of binary hard sphere systems never confirmed this phenomenon. Is there a discrepancy between experiment and simulation? Our manuscript, now published in Physical Review Letters, directly answers this question.

In brief: No, there is no discrepancy. With the right simulation method and good order parameters it is in fact possible to detect crystalline order in binary hard spheres. As we show in detail and also quantitatively for Laves phases, diffusion in the fluid is the reason why crystallization is much slower than in systems of identical spheres.

The results also lead to new scientific insights by demonstrating the existence of a transition from a nucleation and growth regime to a spinodal decomposition regime. The findings add to an active discussion in the glass physics community. Finally, state diagrams are reported as reference for future research.

Read about the research here:

Praveen K. Bommineni, Marco Klement, Michael Engel
Spontaneous Crystallization in Systems of Binary Hard Sphere Colloids
Physical Review Letters 124, 218003 (2020)

New work with the Vogel lab, this time on structural color:

“Micrometer‐scale crystalline colloidal clusters are produced by confined self‐assembly in emulsion droplets. Structural color is used to characterize icosahedral, decahedral, and face‐centered cubic clusters. Their color motifs arise from internal grain arrangement, which gives rise to circle, strips, bowtie patterns, and so on. Monitoring color evolution provides information on the dynamics of rotation and the colloid crystallization in confinement in real time.”

Read about the research here:

Structural Color of Colloidal Clusters as a Tool to Investigate Structure and Dynamics
J. Wang, U. Sultan, E.S.A. Görlitzer, C.F. Mbah, M. Engel, N. Vogel
Advanced Functional Materials TBA, 1907730 (2019)

Our joint work with Nicolas Vogel and Erdmann Spiecker advanced the understanding of the structure, defect accumulation and thermodynamics of colloidal clusters on and off magic numbers and was awarded this month’s cover for ACS Nano. Congratulations Junwei and Chrameh!

Read about it here:

Free Energy Landscape of Colloidal Clusters in Spherical Confinement
J. Wang, C.F. Mbah, T. Przybilla, S. Englisch, E. Spiecker, M. Engel, N. Vogel
ACS Nano 13, 9005-9015 (2019)

Fractional crystallization is crystal formation out of chemical mixtures or solutions. In this process, the growing crystal typically has a different composition than the fluid. This makes fractional crystallization an important method for separating or purifying substances based on differences in solubility. In geology, fractional crystallization is operating within the Earth’s crust and mantle during the formation of igneous rocks.

The simplest case of fractional crystallization in simulation is the crystallization of hard spheres. Praveen Bommineni, MAP student Nydia Varela-Rosales and Marco Klement in the group of Michael Engel now calculated the crystallization behavior of mixtures of hard spheres as a function of size-dispersity (composition) and packing fraction (density). The work was achieved using advanced statistical sampling to speed up simulation and access long times required for observing the crystallization phenomenon. The crystals discovered have relevance for the behavior of nanoparticles, micelles, and the structure of alloys and the elements.

Crystallization from size-disperse mixture of spheres.

Complex Crystals from Size-Disperse Spheres
P.K. Bommineni, N.R. Varela-Rosales, M. Klement, M. Engel
Physical Review Letters 122, 128005 (2019)

In a joint collaboration combining experiment (synthesis and self-assembly), analysis (electron microscopy including tomography), and simulation (molecular dynamics and free energy calculations), a team from FAU involving Junwei Wang and Chrameh Mbah reported magic number colloidal clusters:

“Clusters in systems as diverse as metal atoms, virus proteins, noble gases, and nucleons have properties that depend sensitively on the number of constituent particles. Certain numbers are termed ‘magic’ because they grant the system with closed shells and exceptional stability. To this point, magic number clusters have been exclusively found with attractive interactions as present between atoms. Here we show that magic number clusters exist in a confined soft matter system with negligible interactions. Colloidal particles in an emulsion droplet spontaneously organize into a series of clusters with precisely defined shell structures. Crucially, free energy calculations demonstrate that colloidal clusters with magic numbers possess higher thermodynamic stability than those off magic numbers. A complex kinetic pathway is responsible for the efficiency of this system in finding its minimum free energy configuration. Targeting similar magic number states is a strategy towards unique configurations in finite self-organizing systems across the scales.”

Read about it here:

Magic Number Colloidal Clusters as Minimum Free Energy Structures
J. Wang, C.F. Mbah, T. Przybilla, B.A. Zubiri, E. Spiecker, M. Engel, N. Vogel
Nature Communications 9, 5259 (2018)

A paper involving Michael Engel with coauthors Joshua Anderson and Sharon Glotzer from University of Michigan, Masaharu Isobe from Nagoya Institute of Technology, Etienne Bernard then from Massachusetts Institute of Technology, and Werner Krauth from École Normale Supérieure has been chosen as a Milestone Paper “that made significant contributions to their field” among all articles published in the journal Physical Review E in 2013.

Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods
Michael Engel, Joshua A. Anderson, Sharon C. Glotzer, Masaharu Isobe, Etienne P. Bernard, and Werner Krauth
Phys. Rev. E 87, 042134 (2013)

In a recent ACS Nano publication, Alberto Leonardi proposes an etching synthesis method for controlling the shape of core-shell nanocrystals:

“The application of nanocrystals as heterogeneous catalysts and plasmonic nanoparticles requires fine control of their shape and chemical composition. A promising idea to achieve synergistic effects is to combine two distinct chemical and/or physical functionalities in bimetallic core@shell nanocrystals. Although techniques for the synthesis of single-component nanocrystals with spherical or anisotropic shape are well-established, new methods are sought to tailor multicomponent nanocrystals. Here, we probe etching in a controlled redox environment as a synthesis technique for multicomponent nanocrystals. Our Monte Carlo computer simulations demonstrate the appearance of characteristic non-equilibrium intermediate microstructures that are further thermodynamically tested and analyzed with molecular dynamics. Convex platelet, concave polyhedron, pod, cage, and strutted-cage shapes are obtained at room temperature with fully coherent structure exposing crystallographic facets and chemical elements along distinct particle crystallographic directions. We observe that structural and dynamic properties are markedly modified compared to the untreated compact nanocrystal.”

Read about it here:

Particle Shape Control via Etching of Core-Shell Nanocrystals
A. Leonardi, M. Engel
ACS Nano 12, 9186-9195 (2018)

Artistic visualization of core-shell nanocrystal etching. Image credit: Alberto Leonardi.

A publication with experiments by Christian Scholz, then a postdoc at MSS and now at Universität Düsseldorf, appeared in Nature Communications:

“Biological organisms and artificial active particles self-organize into swarms and patterns. Open questions concern the design of emergent phenomena by choosing appropriate forms of activity and particle interactions. A particularly simple and versatile system are 3D-printed robots on a vibrating table that can perform self-propelled and self-spinning motion. Here we study a mixture of minimalistic clockwise and counter-clockwise rotating robots, called rotors. Our experiments show that rotors move collectively and exhibit super-diffusive interfacial motion and phase separate via spinodal decomposition. On long time scales, confinement favors symmetric demixing patterns. By mapping rotor motion on a Langevin equation with a constant driving torque and by comparison with computer simulations, we demonstrate that our macroscopic system is a form of active soft matter.”

Read about it here:

Rotating Robots Move Collectively and Self-Organize
C. Scholz, M. Engel, T. Pöschel
Nature Communications 9, 931 (2018)

Press coverage pro-physik.de (in German):
Roboter mit Fraktionszwang

A research collaboration with Uni Fribourg (Switzerland) lead to a joint publication in PNAS:

“It has been shown recently that disordered dielectrics can support a photonic band gap in the presence of structural correlations. This finding is surprising, because light transport in disordered media has long been exclusively associated with photon diffusion and Anderson localization. Currently, there exists no picture that may allow the classification of optical transport depending on the structural properties. Here, we make an important step toward solving this fundamental problem. Based on numerical simulations of transport statistics, we identify all relevant regimes in a 2D system composed of silicon rods: transparency, photon diffusion, classical Anderson localization, band gap, and a pseudogap tunneling regime. We summarize our findings in a transport phase diagram that organizes optical transport properties in disordered media.”

Band gap formation and Anderson localization in disordered photonic materials with structural correlations
L.S. Froufe-Perez, M. Engel, J.J. Saenz, F. Scheffold
Proceedings of the National Academy of Sciences 114, 9570-9574 (2017)

A research collaboration involving Michael Engel reported the self-assembly of gold nanoparticles of a particular shape with DNA ligands into clathrate colloidal crystals. The work required a combined effort of state-of-the-art synthesis techniques and DEM computer simulations.

Clathrate Colloidal Crystals
Haixin Lin, Sangmin Lee, Lin Sun, Matthew Spellings, Michael Engel, Sharon C. Glotzer, Chad A. Mirkin
Science 335, 931-935 (2017)

Some publicity: